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SUMMARY

Numerical models of solidification including a mushy zone are notoriously inefficient; most of them are
based on formulations that require the coupled solution to the velocity components in the momentum
equation greatly restricting the range of applicability of the models. Initial attempts at modeling directional
solidification in the presence of a developing mushy zone using a projection formulation encountered
difficulties once solidification starts, which were traced to the inability of the method to deal with large local
density differences in the vicinity of the fluid–mush interface. A modified formulation of the projection
method has been developed that maintains the coupling between the body force and the pressure gradient
and is presented in this work. This formulation is shown to be robust and extremely efficient; reducing
very significantly the necessary storage and the computational time required for the simulation of problems
involving very large meshes when compared with previously published data. This is illustrated in this
work through its application to simulations involving a Pb–Sn alloy. Copyright q 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Models of solidification of alloys in the mesoscale (1–100mm) that capture the evolution of the
mushy zone in an average sense began to appear in the 1960s. Initially, these models concentrated
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on the effect of solute redistribution in macrosegregation [1–9], and included only buoyancy-driven
convection in the interdendritic liquid. Later on in the mid-1980s, models capable of describing
macrosegregation when thermosolutal convection in the liquid is important and the geometry of the
mushy zone varies with time were developed; this allowed the models to capture the formation of
‘freckles’ or channel segregates that evolve from the interaction of thermosolutal convection with
the mushy zone and the partial remelting of the dendrites [10–14]. These models do not resolve
the microstructure in the mushy zone, rather; the solid-fluid mix is treated as a porous medium
and the equations are developed using volume averaging [15, 16] or mixture theory [10, 13]. This
eliminates the need to model the solid–fluid interface. The fluid and mushy zones can be treated as
a single domain using a momentum equation that includes a Darcy term with variable anisotropic
permeability in the mushy zone, and that reduces to the standard Navier–Stokes equations in the all-
liquid region. Most of the work that has been reported in the literature addresses two-dimensional
calculations. References [11, 13, 14, 17–23] are some of the most representative publications but
by no means a comprehensive list; literature reviews have appeared in [24–26].

All of the models cited above solve the velocity and pressure as a coupled system of equations
making them computationally inefficient; this is probably one of the reasons why the activity in
this area has declined significantly in recent years. It is well known that projection (or fractional
step) methods [27–34] are the most efficient for the solution to the Navier–Stokes equations, but
their use in solidification models has been very limited [35–37]. Moreover, in the first two of
these references the authors presented modest calculations with two-dimensional meshes in the
order of 30×40 elements, which can also be properly handled by coupled methods. To the authors
knowledge no large calculations have been attempted. The inefficiency of the existing methods
referred to the above has made it extremely expensive to apply in important practical situations
where the potential development of freckles is not known a priori [38]; this motivated the work of
Westra [37] where a projection method was developed. This particular effort aimed at obtaining
a more efficient model capable of performing calculations in very large meshes at a reasonable
cost. However, the work in [37] encountered significant difficulties in the implementation. Even
though a method capable of performing large calculations was implemented, it was difficult to use
and require modifications according to the specific problem at hand, making it impractical. These
difficulties were traced to the inability of the model to capture large local density differences at
the interface between the tip of the dendrites and the all-liquid region when solidification takes
place, and motivated the development of the formulation presented in this work.

In this paper a finite element model is presented that is based on the projection method and
formulated to maintain an implicit coupling between the body force terms and the pressure. The
formulation calculates the intermediate velocities explicitly making it highly parallelizable, and
it uses a stabilized Petrov–Galerkin formulation based on trilinear elements (three-dimensional).
In the following section we discuss three-dimensional mushy zone models; the solidification
model is presented in Section 3; the projection method is formulated in Section 4 and some
aspects of the discretization are discussed in Section 5. The results of simulations are discussed in
Section 6.

2. THREE-DIMENSIONAL SIMULATIONS

Considerably less work has been published on three-dimensional than two-dimensional models and
simulations of dendritic solidification with a developing mushy zone; the models that have been
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published also solve the momentum equations as a coupled system [39–43]. In [39] calculations
for a binary mixture of NH4Cl−H2O with a mass fraction of 32% NH4Cl, in a cylinder segment
of height 102mm, radius 64mm and a 45◦ angle were presented. A grid of 42×42×13 points and
a finite volume formulation were utilized. In the z-direction, the grid was non-uniformly graded
to provide for better resolution at the bottom. The calculations required roughly 17min CPU time
per second of solidification on a Cyber 205 computer. Reference [40] presented calculations for
a binary Pb–10 wt% Sn mixture in a parallelepiped of cross section 10mm×10mm and 20mm
height and in a cylinder of 10mm diameter and 20mm height. A finite element method combined
with a Galerkin least-squares (GLS) formulation was used. The parallelepiped was discretized with
a 20×20×30 element mesh of uniform trilinear elements and the cylinder with a mesh of 12,360
hexahedral isoparametric eight-node elements. A typical calculation took about 2min CPU time per
second of solidification on an SG Power Challenge utilizing one processor. Reference [41] presents
an extension of the model in [40] to multi-component alloys. A calculation for a Ni-based alloy with
6 wt% Al, 6 wt% Ta and 5 wt% W was performed in a parallelepiped of 10mm in the x-direction,
20mm in the y-direction and 30mm in the z-direction (height). The mesh contained 20×40×30
trilinear elements in the x-, y- and z-directions, respectively. The calculation took approximately
4.2min CPU time per second of solidification in the SG machine mentioned above. In more recent
publications [42, 43], calculations for a binary Pb–10 wt% Sn alloy have been presented. In [42]
the computational region was a 3mm×3mm×10mm parallelepiped discretized using four-node
tetrahedral finite elements. The finest mesh used contained 979 549 elements and 169 768 nodes, and
required approximately 25min CPU time per second of solidification on an HP C180 workstation
with 512MB memory. The calculation in [43] involved a parallelepiped of 10mm×10mm×20mm
discretized using a stabilized finite element method with a 20×20×30 trilinear brick elements;
no information was reported on the CPU time required for these calculations. If we consider
that in the above models the meshes were primarily selected according to the storage capacity of
the hardware, it is clear that the models are not suitable at the present time to perform realistic
three-dimensional calculations.

Only two implementations of projection methods in three dimensions are known to the authors
[37, 44]. The work in [37] has already been mentioned in the context of two dimensions, here a
calculation for a Pb–10 wt% Sn alloy in a 10mm×10mm×20mm parallelepiped was presented.
The mesh consisted of 40×40×111 trilinear elements with 188 272 nodes and required roughly
60min of CPU time per second of solidification simulation on a Compaq GS60E. In Reference
[44], the emphasis was on the model for porosity formation; it presents a calculation for a relatively
complex A356 plate casting with the largest spatial dimension in the order of 20 cm. There are
various simplifying assumptions in the convection model, the solution algorithm is based on SOLA
and SIMPLE, and utilizes other software such as Thermo Calc and DICTRA. Unfortunately, no
information is given about the meshes or the efficiency of the model. However, it is evident that
the calculation would be representative of a practical engineering geometry.

The CPU times given above are those reported by the authors and have to be evaluated according
to the computer hardware used at the time. All of the models would perform better if executed
in today’s faster machines. In [45], evidence was presented supporting the hypothesis that the
number of computational nodes used in simulations of solidification processes has doubled every
18 months during the last 30 years, and in the year 2000, calculations with 108 nodes were reported
[45]. This trend appears to hold for models that, in general, consider fluid flow and heat transfer
in the mold filling and cooling process. However, this hypothesis has not been realized for the
mushy zone models discussed here. Starting in 1984, the lower bound given in figure 2 of [45]
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predicts calculations using 107 nodes today. Nevertheless, the largest calculations reported so far
(even in this work) do not go beyond O(105) nodes. The scheme proposed in this work will allow
us to bring mushy zone simulations up to par with other areas of solidification modeling.

3. SOLIDIFICATION MODEL

Let us consider the solidification of a binary alloy. The basic assumptions are Darcy type, laminar,
incompressible and Newtonian flow with anisotropic permeability in the mushy zone; no pore
formation, only solid and liquid phases; stationary solid and no diffusion in the solid; density that
can be different in the solid and liquid, but constant within each phase; the specific heat in the
solid and liquid can be different but all other properties are equal and constant in both phases.
The assumptions of constant properties in each phase simplify the model considerably but are not
necessary; the formulation using fully variable properties, including in particular the density and
specific heat was presented in [46]. The continuum equations of continuity, momentum, energy and
solute conservation can be developed using volume averaging [15, 16], the first two of these are
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where �l is the density of the liquid, �S the density of the solid, u the superficial velocity, �
the volume fraction of liquid and t the time. In Equation (2) p is the pressure, � the kinematic
viscosity, K the permeability, g the gravitational force and � denotes the variable density in the
body forces using the Boussinesq approximation, which in this work assumes the form

�=�l[1+�T(T −T0)+�C(Sl−S0)] (3)

Here �T and �C are the thermal and solutal coefficients of volumetric expansion, respectively, Sl
is the solute concentration in the liquid, and T0 and S0 are the reference temperature and solute
concentrations at which �l is given.

The energy and solute conservation equations are
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In the above equations,

�cp =�ScpS(1−�)+�lcpl� (6)
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and

�S=�SSS(1−�)+�lSl� (7)

are the average local heat capacity and average local solute mass concentration in the mushy zone.
cpS and cpl are the specific heat in the solid and fluid, respectively, T is the temperature, L is the
latent heat at the reference temperature TH, SS is the solute concentration in the solid and � is the
conductivity.

It is further assumed that there is no undercooling in the mushy zone; hence, the liquidus
temperature is a function of the local composition and given by

T =mSl+Tm (8)

where the liquidus line in the phase diagram is assumed to be a straight line with slope m and Tm
is the melting temperature of the pure solvent. Finally, in the case of no diffusion in the solid the
solute concentration in the solid is given by

SS= 1

1−�

∫ 1

�
kSl d� (9)

where k is the partition coefficient assumed to be constant.
The following section addresses the solution to the momentum equation using a projection

method, the continuity and momentum equations are expressed in the non-dimensional form to
simplify the development. This is accomplished using a reference length H , a reference velocity
U =√�SgS0H and a reference time �=H/U . The non-dimensional temperature is given as T =
(T ′−T0)/GH and the solute concentration by S= S′/S0, where the prime denotes a dimensional
variable. The continuity and momentum equations take the form
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where �=(�S−�l)/�l is the contraction coefficient; the Reynolds number Re, the Froude number
Fr and the Darcy tensor Da are given by
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G is the initial temperature gradient, and ĝ is a unit vector in the direction of gravity. The
permeability tensor K is assumed to be diagonal; the values have been obtained by means of
regression analysis of available empirical data and from numerical calculations for the range of
permeability where empirical data cannot be obtained [47–49]. The permeability is given below
as a function of the volume fraction of liquid � and the primary dendrite arm spacing d1,

Kxx =Kyy =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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In this work, we consider test calculations in rectangular and parallelepiped geometry only. The
initial conditions are one region of all-liquid with no fluid flow, uniform solute concentration and
a uniform linear temperature gradient G in the vertical direction. The boundary conditions for
the velocity are no-slip and no-normal penetration at solid boundaries; that is the bottom of the
container and the vertical walls, and a porous surface at the top to allow flow into the computational
region to account for contraction. The side walls are treated as adiabatic, the initial temperature
gradient G is imposed at the top, and the bottom surface is cooled at a prescribed rate RC, i.e.

Tb(t)=Tb(0)−RCt (14)

where Tb denotes the uniform temperature of the bottom surface. For the solute concentration no
mass flux is assumed at the bottom and side walls, and a mixed boundary condition is applied at the
top so that liquid coming into the region by contraction is at concentration S0. The computational
region for a two-dimensional domain and the boundary conditions are depicted in Figure 1.

4. PROJECTION METHOD

The projection method presented here is based on an approximation that is only first order in time
for simplicity. The form of the momentum equation (11) to be satisfied is
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Figure 1. Computational domain and boundary conditions in the x–z plane. The same configuration occurs
in the y–z plane with the x-derivatives replaced by the y-derivatives along the vertical walls. w denotes

the vertical velocity component at the top.

The convective and diffusive terms are treated explicitly. The dependent variables are decomposed
in the form

un+1 = u∗+(un+1−u∗)

pn+1 = pn+(pn+1− pn)

T n+1 = T n+(T n+1−T n)

Sn+1
l = Snl +(Sn+1

l −Snl )

(16)

where u∗ denotes the intermediate velocity in the viscous projection step. Substituting expressions
(16) into Equation (15), the latter can be split into the following two expressions:
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and

un+1−u∗

�t
− �

�

��

�t
(un+1−u∗) = −�∇(pn+1− pn)− �

Re
Da−1(un+1−u∗)

+�

[
1

Fr
(T n+1−T n)+(sign�S)(S

n+1
l −Snl )

]
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From Equation (17) the intermediate velocity is given by
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The use of a lumped mass matrix makes this calculation explicit, while retaining the Darcy term
implicitly. This is essential for the stability and efficiency of the algorithm. Rearranging Equation
(18) so that (un+1−u∗) is on its own, and taking the divergence yields
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This is the equation needed to calculate the increment in the pressure, and couples the pressure
increment with the changes in the body force term at each time step. The new velocity at time
step tn+1 is obtained from
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It is well known that a variety of issues are associated with the use of projection methods for
the solution to the incompressible Navier–Stokes equations. The literature is full of examples,
variations on the method and applications to incompressible flow calculations; and many papers
are dedicated to estimating its accuracy [27–34]. The general consensus is that the velocity can
be determined to second-order accuracy, but there is disagreement on the pressure. Some authors
claim that the pressure can be determined to second-order accuracy [30, 50], while others argue
that the very nature of the fractional step methods limits the pressure to first-order accuracy no
matter what steps are taken to improve the method [51, 52]. However, there is consistent agreement
on the necessity to ensure an accurate selection of the boundary conditions for the intermediate
velocity [29], accurate selection of the boundary conditions for the pressure [53–55], and the use
of appropriate pressure-correction schemes [30, 31, 33, 50]. The first two of these items are related
to the inherent difficulty in the fractional step method brought upon by the fact that there is only
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one real set of boundary conditions for the divergence-free velocity, whereas splitting the solution
to the Navier–Stokes equations into two steps requires two sets of boundary conditions. The third
item argues for the calculation of the increments in pressure at every time step, relative to the
pressure at the previous time step.

Ways to impose boundary conditions on the intermediate velocity have been carefully discussed
in [29, 52, 56, 57] and will not be repeated here. Boundary conditions for the pressure Poisson
equation are analyzed in [30, 32, 33, 50, 52, 54, 55, 57]; the authors agree that accuracy is improved
by the calculation of the incremental pressure, but they do not suggest boundary conditions for the
incremental pressure other than to infer that the normal derivatives at the solid boundaries must
be homogeneous. In the present implementation the homogeneous Dirichlet boundary conditions
are imposed both in the intermediate and the final velocities; the pressure Poisson equation is
subjected to homogeneous Neumann boundary conditions everywhere, and the pressure fixed at
the upper right corner of the domain.

5. FINITE ELEMENT DISCRETIZATION

The projection method discussed above has been implemented by means of a stabilized finite
element formulation based on bi-linear elements with a 2×2 Gauss integration in two dimensions
and trilinear elements with a 2×2×2 Gauss integration in three dimensions for both the velocity
components and the pressure. To avoid locking due to the equal-order interpolation the contributions
of the velocity divergence, the pressure and the body force terms are selectively reduced integrated
using a one-point Gauss quadrature. This is similar to using a mixed formulation with bilinear
velocity and constant element pressure, or a penalty formulation with bilinear velocity. It is known
that this element does not satisfy the LBB consistency condition because the consistency constant
depends on the mesh parameter h, and the element can lock if the problem data are not smooth
[58]. However, except for very rare situations the element converges at the optimal rates of second
and first orders for the velocity and pressure, respectively [59]. Furthermore, if selective reduced
integration is not applied the method locks as expected. The elements are isoparametric although
in the examples shown in this work only rectangular brick shapes are used. A standard Petrov–
Galerkin stabilization is applied to the convective terms [60] and lumped mass matrices are used
throughout. For further numerical stability considerations, the latent heat term in the temperature
equation is re-written in terms of the total solute concentration and temperature in the manner
explained in [61]. The calculation of the velocity and solute concentration is done explicitly;
however, the diffusion term in the temperature equation is kept implicit requiring the solution to
a linear system of equations. The pressure equation is elliptic and also requires an implicit solver.
As shown in Equation (15), time has been discretized using a simple backward Euler scheme, the
time marching scheme uses a variable time step that is selected for each time step as a function
of the maximum velocity in the domain in order to control the stability of the algorithm while
maximizing the size of the time step.

6. SIMULATIONS AND DISCUSSION

The projection algorithm was implemented in a three-dimensional solidification simulator that has
been used extensively for modeling freckle formation in binary alloys [40]. In the original version
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published in [40], the momentum equations were solved using a GLS method with equal-order
trilinear interpolation for velocity and pressure. This scheme was replaced by the fractional step
method presented in Section 3. The same conjugate gradient algorithm with diagonal precondi-
tioning and sparse format storage used in [40] was used in this work to solve the systems of
algebraic equations that result from the discretization of the energy and pressure equations.

A Pb–20 wt% Sn alloy was selected for the simulations, which we know from past experience
has abundant freckle activity when solidified directionally at low cooling rates. The thermodynamic
and transport properties of this alloy are readily available in the literature [12]. A calculation was
done in a rectangular region of cross section 10mm×10mm and of height 20,mm. It is assumed
that the alloy fills the domain completely and is enclosed by solid walls; therefore, no-slip boundary
conditions are applied on all surfaces. Initially, the alloy is all-liquid with a linear temperature
distribution varying from 524K (slightly larger than the liquidus temperature) at the bottom and
544K at the top (i.e. a gradient of 1000K/m). The lateral surfaces are insulated and the initial
temperature gradient is imposed at the top. The melt is then directionally solidified from below
by prescribing a cooling rate of RC=0.5K/min on the bottom surface. For simplicity, in these
calculations it was assumed that �S=�l and that the domain is completely enclosed.

Several simulations with various meshes were performed to assess the model and the mesh
sensitivity of the results. A direct comparison between the results using the different meshes
cannot be made, because the number and location of the channels varies from one simulation to
another. However, the general trends are as expected and in agreement with the results of the mesh
sensitivity study presented in [38].

A simulation was performed with the uniform finite element mesh of trilinear ‘brick’ elements
used in [37], which consists of 40×40 elements in the horizontal cross section and 111 elements
in the vertical direction, giving a total of 177 600 elements and 188 272 nodes. This is a much
finer resolution than the one used in [40], which had only 12 000 elements in a domain of
the same dimensions. This simulation was also attempted with the model used in [40]; it ran
for some 100 time steps before encountering convergence difficulties. This is not unusual since
the model requires a readjustment of the stabilization parameters as the calculations progress.
The CPU time per second of solidification required by this program was 4 times larger than
for the model presented here. Furthermore, while a GLS implementation with this mesh takes
approximately 650MB of memory, the present formulation requires only 20MB. This is because in
the GLS formulation, the resulting momentum matrix has 4 degrees of freedom per node (the three
velocity components and pressure), while in the fractional step algorithm only the pressure equation
(1 degree of freedom per node) must be solved implicitly.

Simulation results after 20min of solidification are shown in Figures 2–4. The mushy zone has
advanced approximately 8mm and it displays an intense channel activity. A total of 11 channels are
observed, which will become freckles after solidification. All the phenomena related to channel-
type convection and freckle segregation that were amply described in [40] are also observed
here, including the volcano shape of the channel mouths at the tip of the mushy zone, from
which plumes of Sn-enriched liquid emerge. Compared with the simulations in [40], however, the
channels in the present simulations are observed to penetrate deeper into the mushy zone while
still being completely liquid. This is a consequence of the finer mesh in this simulation which
can better capture the channel geometry. Figure 4 shows the structure of the channels by plotting
the isosurface corresponding to the fraction of liquid=0.98. The top of the mushy zone was set
semitransparent to better observe the channel positions. Superimposed to this plot, the velocity
vectors are shown in regions where the total concentration of Sn is larger than 20.5 wt%. The color
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Figure 2. Volume fraction of liquid after 20min of solidification of Pb–20 wt% Sn alloy, showing channel
formation and enhanced growth at channel exits on top of the mushy zone.

Figure 3. Contours of total mixture concentration (wt%) in the first 5mm of the mushy zone, showing
Sn-enriched liquid inside the channels and depleted Sn around them.
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Figure 4. Isosurface �=0.98 showing top of the mushy zone and channel structure. Velocity
vectors in regions of enriched liquid show plume-type convection. Coloring corresponds

to the total concentration of Sn (wt%).

Figure 5. Processor time consumed by different sections of the solidification
model as a function of mesh size.

of both the isosurface and the velocity vectors corresponds to the local concentration of Sn. This
enables observation of the plume-type convection of Sn-enriched liquid coming out of the channel
mouths as well as the re-entrance of less-enriched liquid feeding the sides of the volcano-type
structures. The maximum velocity in the domain is approximately 1mm/s, similar to the values
reported in our previous work.
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Figure 6. Number of iterations required to solve the pressure equation as a function of mesh size.

The reader is referred to previous publications [12, 40, 41] for extensive details on freckle
formation and channel dynamics, which will not be repeated here. Here we discuss the performance
of the projection method for this type of calculation. The simulation shown in Figures 2–4 took
approximately 4min of computer time (CPU time) per second of solidification when executed in
a DELL XPS 420 PC with one processor of 2.4GHz. In older hardware (laptop with Pentium-M
of 1.7MHz), the same simulation takes about 10min per second of solidification. This is a very
significant improvement over previously reported performances.

To better understand the performance of the program, CPU time and memory requirements as a
function of the problem size were calculated. Figure 5 shows a CPU time analysis, describing the
time taken by the separate sections as a function of the mesh size. It is observed that the momentum
equation requires about 90% of the CPU time, and the energy equation accounts for less than 10%
of the total CPU time, even though both the temperature and pressure equations generate alge-
braic systems of the same order. Momentum and energy are both solved with the same conjugate
gradient solver; this is well known to computational fluid dynamics practitioners. Figure 5 shows
that the difference in the CPU time required to solve the pressure and the temperature equations
increases significantly with the problem size, and the solution to the pressure accounts for about
75% of the total CPU time. This can be understood by observing Figure 6, which shows the
number of iterations as a function of the number of nodes in the mesh required by the conjugate
gradient method to solve for the pressure, and how this number increases with mesh refine-
ment. On the other hand, the temperature equation requires around 20 iterations increasing only
modestly with the problem size. The efficiency of the pressure solver can be greatly enhanced intro-
ducing more sophisticated techniques based on Newton-Krylov or multi-grid preconditioned solvers
[62–65].

Even though no effort has been given to the optimization of the projection algorithm, the
performance observed in the simulations is highly attractive; it improves by an order of magni-
tude on previously published results. Combined with parallelization and a more sophisticated
pressure solver this algorithm will provide a tool to perform very large, realistic simulations
of solidification of castings that so far have been lacking, and that are badly needed for cast
design.
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45. Voller VR, Porté-Agel F. Moore’s law and numerical modeling. Journal of Computational Physics 2002; 179:
698–703.

46. Heinrich JC, Poirier DR. The effect of volume change during directional solidification of binary alloys. Modelling
and Simulation in Materials Science and Engineering 2004; 12:881–899.

47. Poirier DR. Permeability for flow of interdendritic liquid in columnar-dendritic alloys. Metallurgical Transactions
B 1987; 18:245–255.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1211–1226
DOI: 10.1002/fld



1226 J. C. HEINRICH ET AL.

48. Ganesan S, Chan CL, Poirier DR. Permeability of flow parallel to dendrite arms. Materials Science and
Engineering A 1992; 151:97–105.

49. Bhat MS, Poirier DR, Heinrich JC. Permeability for cross flow through columnar-dendritic alloys. Metallurgical
and Materials Transactions B 1995; 26:1049–1056.

50. Van Kan J. A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM Journal
on Scientific and Statistical Computing 1986; 7:870–891.

51. Perot JB. An analysis of the fractional step method. Journal of Computational Physics 1993; 108:51–58.
52. Strikwerda JC, Lee YS. The accuracy of the fractional-step method. SIAM Journal on Numerical Analysis 1999;

37:37–47.
53. Orzag SA, Israeli M, Deville MO. Boundary conditions for incompressible flows. Journal of Scientific Computing

1986; 1:75–110.
54. Weinan E, Liu J-G. Projection method I: convergence and numerical boundary layers. SIAM Journal on Numerical

Analysis 1995; 32:1017–1057.
55. Weinan E, Liu J-G. Projection method II: Godunov–Ryabenki analysis. SIAM Journal on Numerical Analysis

1996; 33:1597–1621.
56. Le Veque RL, Oliger J. Numerical analysis project. Report NA-81-16, Computer Science Department, Stanford

University, Stanford, CA, 1981.
57. Shen J. On error estimates for some higher order projection and penalty-projection methods for the Navier–Stokes

equations. Numerische Mathematik 1992; 62:49–73.
58. Carey GF, Oden JT. Finite Elements, Vol. IV: Fluid Mechanics. Prentice-Hall: Englewood Cliffs, NJ, 1986.
59. Carey GF, Krishnan R. Penalty finite element method for the Navier–Stokes equations. Computer Methods in

Applied Mechanics and Engineering 1984; 42:183–244.
60. Heinrich JC, Pepper DW. Intermediate Finite Element Method. Fluid Flow and Heat Transfer Applications.

Taylor & Francis: Philadelphia, PA, 1999.
61. Felicelli SD, Heinrich JC, Poirier DR. Numerical model for dendritic solidification of binary alloys. Numerical

Heat Transfer B 1993; 23:461–481.
62. Meister A. Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme

for the computation of viscous and inviscid flow fields on unstructured grids. Journal of Computational Physics
1998; 140:311–345.

63. Briggs WL, Henson VE, McCormick SF. A Multigrid Tutorial (2nd edn). SIAM: Philadelphia, PA, 2000.
64. Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn). SIAM: Philadelphia, PA, 2003.
65. Knoll D, Keyes D. Jacobian-free Newton–Krylov methods: a survey of approaches and applications. Journal of

Computational Physics 2004; 193:357–397.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1211–1226
DOI: 10.1002/fld


